Important note!

Nar man tager krydsproduktet V.A4sa tager det hgjde for retningen af V11 S& ved et outlet
f.eks. far man positive V-4A= VA, sa skal man stadig bare indseette stgrrelsen af IV og ikke
retningen. Den retning ER DER taget hgjde for! Men skal man f.eks. have u af en vector som er
negativ, sad er u = —V hvor I/ er starrelen af vektoreren! Med andre ord sa vil u gerne have

retning med



Lecture 2 - Fluid statics

Pressure variation in a static fluid
We have
P — Do =pg(zo — z)

N, Reference level
and pressure

Location and
z < 20— h —DP>Do pressure of
interest
The more commonly used is
Ap = pgh
Assumptions

- Static flow
- Incompressible flow

This is positive when going down! And positive when going up.
Fluid pressure in multiple liquid manometer

Multiple-Liquid Manometer:
1. Any two points at the same elevation in a continuous region of the same liquid are at the same pressure.
2. Pressure increase as one goes down a liquid column (pressure increase in a swimming pool).

Ap=yg Z pil;



Hydrostatic force on submerged surfaces

How do we calculate forces from pressures?

One draws the coordinate system along the surface you want to calculate

1“” — / P dA
JA

Where p is the pressure acting at the infinitesimal area

The integral method

Location of force:

y' Frp = / yp dA
4 A

Algebraic form:

Fr = pcA
D = pressure at centroid of area
Her findet man midten som
I;z’
/ T
Yy =Y+ A
Ye




Curved sumberged surfaces:

The resultant hydrostatic force on a curved submerged surface is specified in
terms of its components.

|FH =pA and FV:[)g¥|

Fy
—
Fiy Fy=pA
_—]

Curved surface

Liquid volume
f_A_‘\

pc and A are the pressure at
the center and the area of a
vertical plane surface of the
same projected area

¥ is the volume of fluid above
the curved surface

Det han mener, er hvis man ligesom kigger pa “siden af curven” - husk macdonald eksemplet

Bouyancy force

Fhunyuncy =pg¥

Assumptions

- Incompressible
- Static
- Submerged body (ikke en assumption, mere bare sadan et krav)

If an objectis immersed in a fluid, the net vertical force acting on it due to fluid pressure is

termed buoyancy

For a submerged body (can also be a bubble), the buoyancy force of the fluid is equal to the
weight of the displaced fluid.



Lecture 3 - Control Volume analysis 1: Basic laws and mass conservation

System and control volume

In fluid, we don’t do systems we do control volumes. The formal definition of a control volume
is:

- Acontrolvolume is an arbitrary volume in space through which fluid flows. The
geometric boundary of the control volume is called the control surface. The control
surface may be real or imaginary. It may also be a trest or in motion.

En example of a control volume:

Control surface

Control volume —
x

For a control volume one can express the rate of change of a property in a control volume
using the Reynolds transport theorem

dN 0 ;o
— =— npa”v‘+/ npV-dA
dt ) system ot Cv CS

Depending on what you want, replace N and n accordingly

N=Mmn=1
N = P, n:V
N=Hn=7FxV
N=E n=e
N=S m=s

Lets break down the terms.

dN .
P the rate of change of the system extensive property N

%fcv npdV = The rate of change of N inside the control volume that is caused by time.

fCS np V - dA = The net flux of N across the control surface. This accounts for the movement of
N in and out of the control volume due to fluid flow.



Conservation of mass:

This is the case where in Reynolds ttransport theoremwe get N = M => 1 = 1. Conservation
of mass / mass continuity is given by

a
or

pd¥+J pV - dA =0

For uniform flow one uses a sum for the control surface integral (Assume uniform flow)

aaIJCVdev‘JrZ pV-A=0

Note: Uniform flow means the means that for any given cross section, the velocity and other

flow properties are the same for the entire cross section.

=== Sl

@ ®) ©

Figure 2.15: Uniform and non-uniform flows; (a) uniform flow, (b) non-uniform, but “locally uni-
form” flow, (c) non-uniform flow.

The continuity equation basicaly states, that the rate of change of mass in the control volume
plus the net out flow must be 0.

When taking this cross product in the integral, one has to account for if its an inlet or an
outlet. Aninletyields a negative result, and outlet a positive one.

V - dA = VdA cos a V. dA = +VdA V. dA = -VdA
(a) General inlet/exit (h) Normal exit (¢) Normal inlet

There are several special cases of the continuity equation.



Fixed control volume incompressible flow (even though its unsteady) since p =
const the rate of change of mass through the CV is 0)

This means that the volume of the density doesn’t change over time. We then get

]f’-dﬁ:ﬂ
CS

Steady flow (compressible)

/ p‘?-cﬁ:ﬂ
Cs

Remember!: When there is uniform flow at each inlet and outlet, these two also become
sums instead of integrals!

Another ting

The volume flow rate is given as:

S
Il
<!
|



Lecture 4 - Control volume analysis 2: Momentum & Energy equation

Momentum equation for nonaccelerating control volume

| will present the equation, and then | will explain what each partis

- 0 [ - .
F=Fs+Fg=— [ Vpd¥+ [ VpV-dA
> [ [
JCV JCS

-

F; denotes surface forces. (forces from pressure, reaction forces, external forces and so on)

ﬁB denotes body forces (Typically just gravity). From the slides its explained as

These two can be calculated as

j_;B = f p?d—%& = ﬁ—cv — M’E, F’.‘; _ f — de ?Iinus sign becaus].e pressure
cv A orces act onto CS!

Momentum equation for nonaccelerating control volume (Uniform flow)

~ _ — 9 [ - I
F=Fs+Fp=— Vpd¥+y  VpV-A
CV ]

Recalllm = pI7 - dA (Assume uniform flow)

In component form this equation becomes

Fo=F +1Iy = a(—]r:cv upd¥ + -.Csz.fp‘i? - dA
Fy=F +Fp = %CV 0 pd¥ + CS vpV-dA
Fo=r +1p = %CV w p d¥ + .a’cs: wpV - dA

Remember to always reduce your equations to something that’s easier by using assumptions

Momentum equation for a CV with rectilinear acceleration

z 57 . :
Fs +Fp — j a,f, pd¥ = — ] Uy, pdV + / Uyy; PV iy dA
| ~Jev otJey cs ‘

(The last term is what is known as thrust)

The control volume is moving, so we need to account for that. XYZ denotes the absolute
coordinates of the system, whereas xyz denotes the coordinate if one is “standing” on the
controlvolume. In component form



—

a —
Fg_+ Fp, — / arf p aV-= - / Uy 2P dV+/ UnyzPVayz +GA
cv ot Jov cs

—

Fg +.Fp, — / arg p d¥-= 2/ VoyzP d¥+/ Uwyzpvaz -dA
cv Y ot Jov cs

—

3 =)
Fs + Fp, — / ary,p dV-= —/ Wayzp AV + / Wi OV i = dA
cv ot Jov cs

Jeg har lavet et raket eksempel, cool nok eksempel. Forstdet meget lidt, men det er i bogen.

Igen -> antag ting

Conservation of angular momentum (for inertial CV)

I e = o [
er_g+V/ rxgpdV+T5mﬂ=—/
cv ot

X ﬁpcfv+f FxVpV-dA
CV

CS

What does it all mean? We get

Angular-momentum principle for a nonaccelerating (inertial) CV:
The total torque exerted on a system due to surface and body forces
and shaft torque acting on the CV is equal to the rate of change of
angular momentum within the CV and the net rate of flux of angular
momentum from the CV through the CS.

7 = position vector for each volume element with respect to coordinate system
[ # % gdv =the moment of the body forces acting on the control volume

—

Tsnafe = External torques or shaft moments. For example the torque from a pump, turbine or
other mechanical systems interacting with the CV:

a 5L . -
Efcvr X VpdV = Time rate of change of angular momentum within the control volume

fCS? X I7)pl7) - dA = the net flux angular momentum across the control surface.

For uniform velocity (if one assumes that)

F=Fs+Fp=— Vpd¥+Y  VpV-A
JCV ’




Lecture 5 - Differntial analysis 1: Mass conservation & kinematics

Key difference between integral equations and differential forms:

Integral equations are useful when we are interested in the gross behaviour of a flow field and
its effect on various devices

Differential forms of the equations of motion are needed to analyse the local details of a flow

Differential mass conservation

dpu dpv dpw dp
/ n f 4 f 4 op
dx ay dz Ot

=0

Alternatively written as

ap

V-pV+—
p ot

=0

Forincompressible flows (density does not change with time)

LT
dx dy 0dz
For steady flows
. - 77 - ' -
dput N d_,m N d pn —V V=0
dx  dy 0z

Stream function for 2D incompressible flow
oy

J
ad Ix+ —dy

d
V= ox dy

Assume: Incompressible flow & 2D flow

This automatically satisfies mass conservion. Best explained by an example:



Example: Obtain the stream function for the following velocity field
V =2yl + 4xj

Solution:
LW
u= ay an V= ax
w=2 2y sy =yt
dy g(y) =y?
i
v:—a:4x=>1!):—2x2+g('y) flx) = —2x?

= = —2x% +y?



Lecture 6 - Differntial analysis 2: Kinematics & Navier-Stokes equation

Total acceleration of a fluid particle in a velocity field

Can e used to find acceleration of fluid particle

This is called the substantial derivative to remind us that it is computed for a substance.

How is this to be understood?

. DV vV av v av

a, = = U—+0—+w— + —
Dr dx dy Jz dt
total convective local

acceleration acceleration acceleration

ofa particle

Convective acceleration is also what is present in steady flow. Its when particles are cnvected
toward a low velocity region like a corner, and then away to a high acceleration.

If the flow field is undsteady, then the flow will change with time meaning the particle
undergoes some local acceleration, since the velocity field is a function of time. In scalar
components this functionis

For 2D:

For steady flow:



Rotation of a fluid

A fluid particle is in general in a 3D flow field may rotate about all three coordinate axes. The
particle rotation is a vector quantity and is given as

W = Wy + jw, + ko,
Rotation will always occur for fluids in which we have shear stresses, which is present in every

viscous fluid. So rotation only occurs in viscous flows unless the particles are initially rotating.

Positive is CCW, w, denotes rotation about the x-axis. The rotation can be calculated directly
from the curl of the velocity field

1. (r}w o 4 (du ow L0 dv  du

1=— i — = ——— | — = —

) dy 0oz / dz  dx ox dy
| )

— 1 —+
curl V=V x ¥V

There is also the quantity known as “Vorticity” defined as

(=2w=V XV
It’s a measure of the rotation of a fluid element as it moves in the flow field.

Deformation

There are to tipes of deformation. Linear and angular. These can be seen here

to + 0t

ty
\ 1

General Translation Linear Rotation Angular
Motion Deformation Deformation

We can calculate the rates of angular deformation as



o ¢l )
Rate of angular deformation in the xy-plane = (:}ﬂ + ;i)
X ay,
dw o
Rate of anqular deformation in the yz-plane = (% + ;—_’)
ow  du

Rate of anqgular deformation in the xz-plane = (I + ;)

Linear deformation is when the angles in the fluid element remains unchanged. The element

ou 2v ow

will change length in the x, y, or z-direction only if P ay’E are other than zero.

Changes in length of the sides may change the volume of the element. For this once can
calculate the volume dilation rate.

Volume dilation rate = a—u + b V.V
dy  dv oz

Forincompressible flows this volume dilation rate is 0!!

The momentum equation (The navier stokes equation)
Involves particle acceleration, pressure gradient and viscous terms.

General navier stokes:

Du dp N d 2d‘u 2,‘? V)4 d du N do
)— =pg, — — + — ——-=V. — —+ —
Por PR T T |\t T3 ay [“\oy T ox

x —direction:

Do dp+ d ( u+du)} N 0 [ (,jdn ’.EV V)]
P =P8~ +—|u| o+ —u|2——-ZV-
T P Dr dy  dx dy  ox dy dy 3
y —direction: +d o o
dz : dz oy

Dw dp N o dw N du N d ow N dw
— =pg.—— + — — + — — —
Po0 7P 0 T ox [M\ox T az)| Ty [z T oy

z —direction:




Navier stokes for Newtonian fluid (Incompressible with constant viscosity) This is the

one we use!!

direction: au au au du .au _ ai N & N ﬁ N &

¥ odirection: | Pl T T T ) T T T TR T
N dv dv o) Jv op v 9% 9%

—direction: — —+ ;_+w,a.. = po. — — + +—+
Y (d Yo T 2z) "% RS dy~ 8:2J
z —direction: (ﬁ AL L w)_ 9. — P, w + w + o'w
P T T ey T ) T T e TR T T T T o
Vector v

pa+p(l7-l7)l7=p§—l7p+ﬂp'217

notation:

This along with differential continuity can be used to solve a lot of shit

Shear stress distrubtion -> Newtons law of viscosity



Euler and Bernoulli equation (Incompressible Inviscid flow)

Navier stokes for frictionless and inviscid flow (and imcompressible) (Momentum

equation)

. . bV
Includes pressure gradient and acceleration. RecallE = a,

DV
—— =pg—Vp
Py pg — Vi

This is eulers equation. It states that for an inviscid flow, the change in momentum of a fluid
particle is caused by the body force (assumed to be only gravity) and the net pressure force.

Assumptions

- Frictionless flow (Inviscid fluid)
- Only body force is gravity

In component form:

drect out N ot N aau . out ap
x —direction: pl—TU— +V— T | = -
ot dx  dy 0z ‘

y —direction: p (— +U—+ 00— +WwW—-

direction: p (Ow AL LA ] P8 o
Z —dlirectuon: — i — _— J = o
ot X v 0z o

Eulers equation in streamline coordinates.

Remember, the streamline direction is the direction the flow is flowing. The normal direction

is the direction tangent

N »,

The euler equation along the streamline is



Along the streamline;

[op o0z oV oV

— ____|_V_
pds Sos o s

Normal to the streamline:

1 dp dz V2
p on on R

Now the ones we’ll be using are the ones neglecting body forces for steady flow

For streamline direction:

Top oV
p 0s ds
For normal direction:
1op V2
pon R

What is this telling us?
For the streamwise direction

- The change in pressure in the s direction is accompanied by a change in velocity but
with a negative. So if pressure increases along streamline, then velocity decreases and
vice versa.

- L.E Flow accelerates towards low pressure region, and decelerates

For the normal direction

- Since R is curvature, the change in pressure in the normal direction decreases for
straighter lines I.E, if we have a straight line, then the curvature is infinity and then we
have no change in pressure in the normal direction. So there is no pressure change
normal to straight streamlines.



Bernoulli’s equation

Its basically an energy equation
What assumptions are to be used?

- Flow along a streamline
- Steady flow

- Inviscid flow

- Incompressible flow

p V
— + — + gz =constant
p 2
Or
V2 V3
&4._1-{-351 =&+—2+822
P 2 1% 2

(The p in this equation is the static pressure btw)

Static, stagnation and dynamic pressures

Static pressure

- The pressure experienced by a fluid particle as it moves
Stagnation pressure

- The pressure obtained when a flowing fluid is decelerated to zero
Dynamic pressure

- Pressure due to the flow velocity. The difference between stagnation and static
pressure

Examplified static pressure

/Small holes
o Flow
Flow _
streamlines ————————p
_—
l l Stem
Pressure/'

tap
To manometer or

pressure gage
(a) Wall pressure tap (b) Static pressure probe



Two difference ways to measure static pressure. You basically drill a hole, and the pressure
you can measure from that, is the static pressure, as the flow has to move

Examplified stagnation pressure

Pitot tube:

Flow

-

Small hole

|

To manometer or
pressure gage

This is the pressure you get when the flow is decelerated to 0. So one would have a hole facing
the flow, that’s causing the flow to decelerate.

How to calculate?
Static pressure same as before

Stagnation pressure:

1 2
po=p+§pV

1 . . . . . .
The latter term Esz is called the dynamic pressure. p is static pressure, p, is the stagnation

Pressure.

Isolated for velocity:

2(po —P)

Again to use these

Flow along a streamline

Steady flow

Inviscid flow

Incompressible flow



Energy Grade Line and Hydraulic Grade line

Head of flow:
Dividing the Bernoulli equation by g gives

p V2
—+-—+z=H
pg 29

This is the total head of the flow measured in meters. The total head represents the TOTAL
energy of the flow. So its also known as the EGL (energy grade line)

p V2
EGL=—+ — +2z
pg 29

(Height of column) (Stangation pressure) (Pitot)

We also have the the hydraulic gradeline

HGL:£+Z

Py

This does not account for dynamic pressure (Height for static pressure)

The dynamic pressure term is then

VZ
EGL — HGL = —
2g

This is a visualization tool basically. Lets look at it

Free surface Energy grade line (EGL)
-

\\ Hydraulic
\\ grade

v line (HGL)
\

&=

Datum (z = 0)




At point 1 we don’t have any velocity, so EGL = HGL

Going to point 2 first some of our pressure and potential energy gets converted to both
pressure and kinetic energy, so we the HGL drop. Then it statys constant for a bit, until the
pipe starts to get smaller on its way to point 3, where the decrease in area means and
increase in velocity, and thus a decrease in pressure. So the HGL falls. It then remains flat
again. Its flat because the z termis both in HGL and EGL



Lecture 8 - Bernoulli continued and irrotational flow

Meget af det far faktisk under lectureren far

Eulers as energy equation

o]

p+ 4 + tant
— + — + gz =constan
/’ﬂ z "\

/ \
Pressure Kinetic Potential
energy  energy  energy

Bernoullis equation for unsteady flow

Bernoulli no longer holds when you have an unsteady flow, but one can show what there is an
Bernoulli equation for Unsteady flows given as

V2
%+7+gz1 p?z+—+g z+/ —ds

Assumptions are

- Inviscid flow
- Flow along a streamline
- Incompressible flow.

20V v . .
The term fl P ds accounts for the unsteady flow component. Pl the local acceleration of

the fluid, ds is an infitesimal distance along the streamline between points 1 and 2. The
integral sums the effect of unsteady acceleration along the streamline between the two
points.

Rotational flow

Note about bernoullis equation

In an irrotational flow, Bernoullis equation is valid between any two points (not just along
a streamline) if flow is also steady compressible & inviscid



Lecture 9 - Dimensional analysis.

Noter | onenote



Lecture 10/11 : Internal incompressible Vicous flows: Fully developed
flows (Laminar) + Flows in pipes and ducts
Internal = Flows completely bounded

Incompressible = p = const (Liquids / gasses with no big change in temp, ora M > 0.3 (mach

number

Viscous = We have viscosity. Shear stresses are present. We’re going to have friction.
We’re going to be working a lot with Reynolds numbers!

_pVD

o

Re

Laminar vs turbulent flows
Laminar Flow

.
e e —
— @ —» @ —
i i e

Turbulent Flow

o S C\xD =
. ——

Laminar flow:
Layed flow. No mixing along the layers other than molecular diffusion
Turbulent flow
- Mixing due to eddies or coherent structures
ﬁ(x,y, zt) =@ +u)i+ @ +v)j+w+wk

The Reynolds number is an indicator for when the transition to turbulence occurs.



Pipes (Continued further down)

Transition to turbulence occurs at Re = 2300

If we look at the entrance region of a pipe

)\

Laminar flow entrance region of a pipe

= —— ___\-\-_
Ly - I_"r A — » -_-h_:::%a:h_____ [T - b
- ’ ——l -~
o el _l
/ | Entrance length | Eg':;ﬂi”;:gmﬁ

- Uniform velocity at entrance

- No-slip condition at the walls

Developing boundary layer slows fluid near the surface (This devoloping boundary
layer is marked with purple in drawing below

- The flow is fully developed when the profile stops changing

0.2 11e enwrance regiloin

\ ¥ .

T — = [
U t—, — = e — R} — - D
e T |
i R
N s\..',p Sl . Loy

The Entrance length L, is the distance from inlet to where the flow becomes fully developed.
The laminar flow entrance length for a pipe is approximately L, = 138D (80D for turbulent)

We have the relation

sk
o

For the flow above then U, = V

Fully developed flow between infinitely parallel plates

- Simplest geometry

- Applies to small gaps.
- u = u(y). Velocity only changes when going up and down between the plates



Assumptions:

These apply to all formulas for fully developed flow between infinite parallel playes

d
- Steady ﬂowa =0

- Fully developed flowg—z = 0 (flow doesn’t change in direction of flow

- Incompressible fluid

- 2D flowin x — y plane (consequence of infinte length in z)
- Gravity in y-direction

- Laminar flow!!

Reynolds number for parralel playes
Re = pV(20)/u,

28 = the height of the plates (or a on the drawing below)

Both plates stationary

The geometry of the plates:

—— =
-
= PIIS —

[—=1

dy | o |
‘ L

-

t —| dx |~
X

One canreduce the navier stokes equation with a lot of assumptions, then integrate twice to
get an expression for the velocity u

Since they’re functions of two different variables, they must both be constant to. Integration
twice and then using boundary conditions thatu = 0 aty = aand y = 0. (a is the height of
the channel)



i D)y (D)= £ (L))~ Q)]

dp . . .
Z is constant! So that’s something we can figure out.

And remember! o

We can then find the shear stress distribution for fully developed flow between parallel
plates.

du
We know 7,,, = ”E

_(dp\ . _(dp\ 1 [(dp\ _ [dp\|y 1
"-‘-‘-*—(a)”“‘-(a)}' 5(@)“-“(5 a 2

Flow rate between stationary infinitely parallel plates (Per unit depth)

Q_ I [dp\ 3

a

[ 12u \ dx
Where L is the depth in the z direction (so into the picture above)

. ap .
Since £ is constant, We then have

a_Pzpz—Ih
0x L

So now we can calculate the volumetric flow rate per unit depth as a function of pressure drop

L

0 I {—Ap] 3 @Ap

10 12 T12uL

Average velocity stationary infinitely parallel plates

v Q 1 [dp\d’l 1 [dp\ ,
= ———=——\|—|a
A 12u \dx) la 12u \ dx

Maximum velocity infinitely parallel plates



_a _ 1 dp 2_3v
Y=o HUEMmx=Te \ax )Y T2

Transformation of coordinates (making y start at the middle of the plate instead of the

bottom)
_a* (dp Y\ 2 1
o (5) (E) 4

The transition number for two parallel plates stationary is Re = 1400. So the above formulae

IMPORTANT NOTE!!

are only valid in this region. You can always do the calculations and then check afterwards.
Their Reynolds is defined as

i O
7

[

Where:
« pis the fluid density (kg /m").
* i, is the mean velocity of the fluid (m/s).
» H is the distance between the two plates ().
* i is the dynamic viscosity of the fluid (Pa' edotps).
Moving upper plate
Now there are different BC
at y=0 uw=>0
at y=a u=U

The only difference ins the solution is a term that accounts for a plate moving

=+ (@) O -0)



Pipes continued (Laminar flow in pipe - analytical solutions)

Remember, laminar flow is for Re > 2300 for pipes)

We want to express the velocity in a pipe. This is done by using the navier stokes in cylindrical
coordinates and reducing the equations using the assumptions:

Assumptions:

1. Steady flow (given)

2. Fully developed flow (given) — no flow variation in the z direction
3. No flow in the r direction (mass balance)

4. No flow or variation of flow in the fdirection (symmetry)

5. Low Reynold’s number (laminar)

6. Gravity is negligible

Geometry of pipe:

r
A

s [ e T
——>X-—1-——-—5-— 2R

Navier stokes simplifies to

Again notmg% = const. Integrating twice and using boundary conditionsthatu =0 atr =

R. And another thing that is weird.



This gives us the velocity profile for a laminar flow in a pipe

R?0p r\?
2R
4u dx R

shear stress distribution for fully developed laminar flow in pipe

_ du_r(dp
el T\ o

Flow rate for fully developed laminar flow in pipe

0= rR* [—Ap] _ 7nApR* _ nApD?

Su | L | 8ulL  128uL

Average velocity for fully developed laminar flow in pipe

y-2_0__R(op
T A R 8ul\ox

Maximum velocity fully developed laminar flow in pipe

R* (9 _
u:un]ax:U:_—<_p) :2V

Pressure difference fully developed laminar flow in pipe

128 LQ
Ap= ——
P w D4

Normalized velocity profile fully developed laminar flow in pipe

u r\ 2
U R
Wall shear stress in fully developed laminar flow in pipe
R op
Tyw=— [Trx},-=;3 — . A

2 ox



Lecture 10B (Actually lecture 11) - Flow in pipes and ducts

This section is more focused on when we have turbulence! Lecture 10 was primarily laminar,
so we could look at analytical solutions, which we wont be able to as much here.

The wish is to find out how to find pressure drop in turbulent flows.
Types of losses in pipes and ducts (and other places for that matter)
Major losses (h;)

- Losses due to friction
Minor losses (h;, )

- Losses due to geometry. (Pipe, fitting, valves, elbows etc)
Bernoulis for flows with friction.

Recall the Bernoulli equation. Since we now have friction, this equation is no longer equal to
constant, since the friction creates a loss of mechanical energy.

e |
-+ + gz = copsiant
p 2

Friction leads to a pressure drop. Both in laminar flows and in turbulent flows (turbulent has

larger pressure drop)
Turbulent velocity profiles in fully developed pipe flows

We cannot find an analytical solution, so through experiments we can apporixmate it using

£ ()"-0-9"

One can calculate this n using Reynolds number

n = —1.7 + 1.8log Rey

the power law

One can also approximate the average velocity

on?
(n+1)2n+1)

v _
v =



Often we use the seventh powers law is good approximation generally
ﬁ_(y)l/'f'_(l 'r')lf?
U \R B R

A turbulent flow is often more “blunt”

n=10
I Turby _
08 n=6
=
R
0.6 — =

Laminar
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Energy considerations in pipe flow

We cannot use the old benoulli equation. But we introduce a kinetic energy coefficient a« and
set up our energy equation as

—" —)
pi Vi, P Va2
‘(; + 5 +g;.|) - ({—) +a > +82 | =h;

Here h;,. denotes the total head loss of the system.

h
(sometimes H,,. is given, that’s just H;, = f)

This kinetic energy coefficient a can be calculated as using the blow integral, but this is not

very accurate
[, pV? dA
S S —
mV

What we instead do is use approximate values for «.
For laminar a = 2.0. For turbulent & = 1.0 usually
Calculation of headloss
We have that the totalt headloss is equal to the sum of the minor and major

th = hl + hlm



For fully developed pipe flows through constant area, then

P1—D2
P =g(z—21)+Nh

And if it’s a horizontal pipe

pi—p2 _Ap
p p

= h,f

So a head loss actually causes a pressure drop. We here have a relationship between head
loss and pressure drop

How to find headlosses in flows using exeperimental data

One way is using the darcy friction factor f which is determined experimentally

h=f

—2
V
2

>l

Altnerativly:
For laminar flows in pipes the darcy friction factor can be found using the relation:

For Re < 2300

64
Re

/=

The turbulent friction factor is found using a moody diagram:
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For turbulent flow Re > 4000. This has an accuracy of +10%

There are a bunch of turbulent friction factor general relations depending on the Reynolds

number.

Turbulent friction factor -
general correlations

Colebrook formula

1
= _201
VI 3

d

e/D

3.7

4 2.51
Re /T

)

Colebrook formula Re > 3000
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Atable over roughness

Turbulent friction factor -
smooth pipe correlations

Blasius correlation for
smooth pipes Re < 10°

0.316
Re0-25

f=

Modified Blasius correlation
for smooth pipes Re > 10°




Table 8.1
Roughness for Pipes of Common Engineering Materials

Roughness, e
Pipe
Feet Millimeters

Riveted steel 0.003-0.03 0.9-9
Concrete 0.001-0.01 0.3-3
Wood stave 0.0006-0.003 0.2-0.9
Cast iron 0.00085 0.26
Galvanized iron 0.0005 0.15
Asphalted cast iron 0.0004 0.12
Commercial steel or wrought iron 0.00015 0.046
Drawn tubing 0.000005 0.0015

Source: Data from Moody [8].

How to find minor headlosses

- These typically come from flow separation. We have

72
Vv J
hlm = K7 [k_g]

Where K is the loss coefficient. These are found experimentally

Table 8.2

Minor Loss Coefficients for Pipe Entrances

Entrance Type Minor Loss Coefficient, K¢
0.5-1.0
Reentrant — —I— (depending on length of pipe entrance)
Square-edged \_ 0.5
r D
Rounded Co | 7/D | 002 | 006 | 015
( t K [ 03 [ 02 | o004

“Based on hy, =K(V"/2), where V is the mean velocity in the pipe.
Source: Data from Reference [12].

Loss coefficient when areas is changing: (Inlets and exists)

Contraction Expansion
Ay —> A, A —> A
¥' o
i AR = A,lA AR = A JA =
£ 1o I [ 10
Q@ o
L e 0.8 —08 2T~
g =N £ e
: o 6 — 0.6 § o
g8 ' 04 —H04 &
e < = =
S 02+ —0.2 S 1m0
u
g 0 | | \ o £
s 0 0.2 0.4 0.6 0.8 1.0 =3
o w

Area ratio, AR



Se pilene for Pil frem og tilbage. Right pil expansion, left contraction

And
Table 8.3 T
Loss Coefficients (K) for Gradual Contractions: Round and Rectangular Ducts
Included Angle, #, Degrees
Az /A 10 15-40 50-60 90 120 150 180
i 0.50 0.05 0.05 0.06 0.12 0.18 0.24 0.26
Flow | “y—1 0.25 0.05 0.04 0.07 0.17 0.27 0.35 0.41
A 0.10 0.05 0.05 0.08 0.19 0.29 0.37 0.43
Pumps, fand and blowers in fluid sections
Calculate added from pump
=2 =2
: V V
Woump = i 2 -+ — + g2 - + — + gz
w M& . Clﬁ‘l
Alternatively

Effenciency

W, = how much power provided to the pump
Wpump = Power from pump to system. So for a pipe system we use

-2

| % V
—+£11—1+g21 e +a'2—2+g22 = hy,
P 2 p 2

There must be some head gain from the pump.




Lecture 11 - External Incompressible Viscous flow pt 1. Boundary layer
theory.

Introduction to boundary layer.

U-Uniform velocity field upstream

—_—

LBL- Laminar boundary layer
] TBL- Turbulent boundary layer
T- Transition
S- Separation point

We have a free stream velocity hitting and airfoil. It has to change the around the airfoil, we
have the stagnation point, where the velocity hits 0. We then have some air boing up and usm
under. Due to the no-slip, we have frictional effects grow larger and larger along the wing. We
see first we have a laminar boundary layer LBL, then we hit the point called “T”, where the
boundary layer transitions to a turbulent boundary layer TBL.

TBL grows faster than LBL. Finally, we arrive at s which is the separation point. Here the flow
separates from the body. This creates a wake, which is going to cause pressure effects.

Far away from the airfoil the viscous effects don’t matter, so we can just use bernoullis,
but down at the airfoil we CANNOT

Boundary layer development

In many real flow situations, a boundary layer develops over a long, flat
surface (e.q. flow over ship hulls, aircraft wings, wind over flat terrain)

U
U -

————

-

-
-
—

| - ==

- |
—_—‘ | e | s
- ‘j :
! Laminar | ! Turbulent
Transition
No-slip condition Plate Reynolds number  Critical (transition) Reynolds number
y=0)=0 PUpX N

u(x,y = 0) Re, = Re,, = 5105

S

v(ix,y=0)=0 * 1
(x.y ) ! ) Critical distance x,

4 AARHUIS

The dashed line is the boundary layer. Above the boundary layer there are no viscous effects.



The transition Reynolds number is defined as

_ pUx

Re, p

U = Freestream. This is approx. equal to Re, =~ 5 - 10°

Boundary layer thickness

There are multiple ways of defining boundary layer thickness

Disturbance thickness 8 = where the velocity within the boundary layer is 99% of the free
stream, sou = 0.99U

Displacement thickness 6* = The distance the plate would have to be moved so that the loss
of mass flux (due to reduction of area) is equivalent to the loss the boundary layer causes.
This can be calculated as! Now one can just use our old equations! Epic.

a*zﬁm(l_;)dyxf(l_g)dy

0

Visualised from mr. macdonald. The shaded purple areas are equal
Lkucbons
w\&g
y 0.99 U
U

B3

'gM?Q Boundary layer thicknesses

8

u#0
u=uly)

U-u

Momentum thickness 0: the distance the plate would have to be moved so that the loss of
momentum flux is equivalent to the loss the boundary layer causes.

w0 &
@:f0 %(1—%)dyzf %(1—3)@

0

;

£) Momentum thicknesg, 8



Laminar flat plate boundary layer formulas:

99%-boundary layer thickness for laminar flat plate boundary layer

§_ 50 _ 50
X Jux/v /Rey
Wall shear stress
D.332pU2
"[ —_——_—
v Re,
Friction coefficient
T 0.664
Cr = T W=
Also
& = 0.344
6 —_— .

Turbulent flat plate boundary layer formulas

All these are semianalytical using% power law profile

99%-boundary layer thickness for turbulent flat plate boundary layer

6 0.382
x Rei/S
Wall shear stress
0.0297pU?
‘l‘ T e——
v Re;/S
Friction coefficient
1,  0.0594
G =7——=—7; for 5x10°<Re <10’
ijz Rex

Table



Table 9.2

Results of the Calculation of Laminar Boundary-Layer Flow over a Flat Plate at Zero Incidence Based on Approximate
Velocity Profiles

Velocity Distribution — = (y)—() 0 5 5 Constantaino=—2 Constant b in €y =—2—
elocity Distri ulanU—f 5 =fln ﬁzs = HEF onstant ¢ in — = e onstant b in Cr = e
fl=n 1 1 3.00 3.46 0.577
6 2
fn =21 2 1 2.50 548 0.730
15 3
314 39 3 2.69 4.64 0.647
flm=5n=5n1 530 3
fy=2n=20" +7* 37 3 255 5.84 0.685
315 10
—ain(® 4-n -2 2.66 480 0.654
0)=sn () SN
Exact 0.133 0.344 259 5.00 0.664

Pressure gradients in boundary layer flow

Flow separation is the detatchment of a boundary layer from a surface into a wake
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Lecture 17 - External Incompressible Viscous flow pt 2. - Flow about
immersed bodies - Drag, Lift and airfoils.

Drag

Drag is parallel to the direction of motion. Total drag can have two contributions. Friction drag
and/or pressure drag

The drag coefficient is used to determine drag

Fp

Cp= 2
T 1ov2A

The area is the "wetted area”
So looking at this, Fj, will vary based on if we have friction drag and or pressure drag.

Pure friction drag (Drag over a plate)
The area “height” of the plate is so small compared to its length, that we simply just neglect it
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The drag coefficient in this case given depending on flow type

Laminar boundary layer

1.33
Cp =
JRe;
Turbulent boundary layer
~0.0742
Cp = T‘L" (5 x 105 < Re;, < 107)
*
Cp= 0455 1610 (5 X 10° < Re;, < 107)
(log Re;)™™®  Rey

Turbulent boundary layers have higher friction drag.(Antager det er log 10 &)



Pure pressure drag

We now turn the plate around compared to before

Y V Yvyy

Now all the drag is from pressure drag.

We’re going to have a high pressure from the velocity hitting the plates (They have dynamic
pressure since they have velocity, and then they get stopped) and we’ll have low pressure in
the wake. So we have a pressure difference pulling the plate to the right.

Doing this, we use the planeform area. So the area then looking on the “front of the car”
forexample.

Table 9.3
Drag Coefficient Data for Selected Objects (Rez10°)%

Object Diagram Cp(Re = 10°)

Square prism blh = x 2.05
N blh =1 1.05

\

Disk 1.17

Ring 1207

Hemisphere (open end 1.42
facing flow)

Hemisphere (open end 0.38

facing downstream)
C-section (open side 2.30
facing flow)

C-section (open side 1.20

facing downstream)

Noa NN N NN
/ /O@@@




Friction and pressure drag

Note: Friction drag depends on Re, pressure does not! Vi tager udgangspunkt |

Flow and pressure drag: Flow over a sphere
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After Reynolds 102 we have like 95% of all drag due to pressure drag. We’re laminar from 0 to
Around 10° where we go turbulent. As we know the turbulent boundary layer resists
separation better, and therefore the separation pointis pushed back. Since the drag is almost
only from pressure, the extra friction added doesn’t matter - what really matters is that the

wake gets smaller, causing the drag to drop.

Graph for a cylinder
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Drag reduction

Simple.

- Flow over a flat plate (Pure friction)
o Reduce drag by having smooth surface so less friction
- Flow over sphere and cylinder (Primarily pressure drag)
o Reduce drag by keeping flow turbulent so wake gets smaller. Keep flow
turbulent by having rough surface

For aerodynamic shapes we use streamlining

l”_,.,-'- "-—\_\_\__\__\_
o e e e = 1 = thickness
M g 1
e i
=— ¢ = chord length —=

What we can do is streamline. So to keep the flow attached, we make a more tear-drop like
shape, so geometry doesn’t change so drastically. This makes the wake smaller and reduces
the adverse pressure gradient. However! Skin drag increases so one has to find a balance
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Lift!
Lift is the component of a pressure force on a body acting perpendicular to the direction of

motion.

Fr
CL = ﬁ
E pV—Ap

Ay, = bc = maximum projected wing area”
No lift for symmetric shapes with zero angle of attack

Wing terminology

CAMBERLINE ... &

» Chord of an airfoil: straight line joining the
leading edge and the trailing edge

+ Angle of attack (a): angle between the airfoil
chord line and the freestream velocity vector.

How does it work?

We know from Bernoulli, that high velocity = lower pressure. So the wing forces the air over its
top faster than its bottom. This results in a pressure difference, with higher pressure on top
and lover on the bottom, so its going to lift.



Lecture 26 - Turbo machinery

Important equations:

Euler turbine equation

Thatt = (r2Vi, =11 Vi, )i |

Euler Turbomachine Equation
(steady, frictionless flow, uniform flow at inlet
and exit, and negligible pressure effects)

Assumptions are as given!

Mechanical power

Wm = (j}Tshaﬁ = m(J“‘zV: — I Vﬁ )I?’.!

Or

W,, = UV, — U}V, it

Theoretical head

9% 1
H=—"=—(U,V,-UV,)
mg g -

Turbine efficiency



W,n T

= Wh _PQgHr
Pump efficiency
9 = Wh, _pQng
7‘0 W"z CUT

Euler turbomachiner equations for centrifugal pumpts

Purely radial velocity at pump inlet > V, =0

Theoretical head: =02
8
with
Vi,
Vi,=Us=Wscos f,=U, - sin/:%2 c0s By = Up — V,, cot B,
and
QO =nD,wV,,
5
> ot 3,
H:%_M H=C -0
g aDrwg
kg - m?

W Vng__ljfg___ .

2 * a, VZ
Bo N>

(¢c) Velocity components
at outlet
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